
RoGaTa Engine Documentation
Release 1.0

Jan Baumgärtner

Jan 11, 2022

Contents

1 What is the RoGaTa Engine? 3
1.1 Who this engine is for . 3

2 How it Works 5
2.1 Game Objects . 6
2.2 Scenes . 7

3 Getting Started 11
3.1 Setting up the Environment . 11
3.2 Setting up the Game Area . 12
3.3 Setting up a Scene . 12
3.4 Tracking Dynamic Objects . 19
3.5 Using the Engine in Gazebo . 19

4 Tutorials 21
4.1 Simple Scoreboards . 21
4.2 Simple Line of Sight Calculation . 23
4.3 Ray Casting . 24
4.4 Changing the Robots Dynamics . 25

5 Code Documentation 27

6 Indices and tables 33

Python Module Index 35

Index 37

i

ii

RoGaTa Engine Documentation, Release 1.0

Contents 1

RoGaTa Engine Documentation, Release 1.0

2 Contents

CHAPTER 1

What is the RoGaTa Engine?

The Robotic Games Tabletop engine is a set of ROS based software tools that bridge the gap between mobile robotics
and game development. It uses a camera to identify real objects and areas and iinitialize them as game objects. This
allows the engine to offer the same functionality a normal game engine provides.

Example functionalities include:

• calculate line of sight between robots without on-board cameras.

• check if a robot has entered a specified area

• simulate laser scanner readings with virtual walls

Using these functionalities it is possible to develop video games which use real robots as actors.

1.1 Who this engine is for

Since most games require multiple robots this engine is primarily aimed at educators. The idea being that games can
be set up with students developing the ‘ai’ of the npcs thereby familiarzing themself with the development of mobile
robots.

However the engine can also be used for experiments with single robots as the virtual game objects allow the simulation
of sensor data such as a laser scanner. Therefore the engine might also be usefull to researchers who need to quickly
set up multiple arenas for their mobile robots, or might want to use the additional information the enigne provides for
a fitness function of a machine learning approach

3

RoGaTa Engine Documentation, Release 1.0

4 Chapter 1. What is the RoGaTa Engine?

CHAPTER 2

How it Works

The RoGaTa engine defines game objects by detecting and tracking their position using a camera affixed over the game
area. To make it quick and easy to setup a game area this is achieved using a mixture of marker based tracking and
color based detection.

The game objects are are managed by scenes. Scenes are ROS Nodes that provide service interfaces which allow
interaction with the game objects. The services of a scene can be called by other ROS nodes in order to either
build higher level systems systems or provide an agent controlling a robot with additional information. For example
querrying the position of a game object called ‘cheese’ can be performed using the following codesnippet:

import rogata_library as rgt
rogata = rgt.rogata_helper()
cheese_pos = rogata.get_pos("cheese")

This code uses the rogata_helper class which abstracts the ROS communication. The section about Scenes explains
how to directly call the different services the RoGaTa engine offers. A schematic view of the communication can be
seen here:

5

RoGaTa Engine Documentation, Release 1.0

In this example there are two ROS enabled robots in the game area. These also share their sensor information and
accept commands via ROS interfaces. The rest of this page will go into more detail about how to build game objects
and scenes. It will also explain how the RoGaTa engine can be used to interact with these objects to build higher level
systems for more complex games or control robots.

2.1 Game Objects

Game Objects are the basic building blocks of the engine. Examples of game objects include:

• robots

• movable obstacles

• Areas

• Buttons

• Walls

In general, such an object is defined by a name as well as the space it occupies within the game area. The simplest
way to define an area is using a mask that specifies for each position whether the point is inside or outside the area. In
robotics, such a concept is sometimes also called an occupancenter_ygrid. However, since storing and manipulating
such grids is resource-intensive. For this reason, only the borders of an object are used to define its area.

6 Chapter 2. How it Works

RoGaTa Engine Documentation, Release 1.0

However, borders alone are not enough to fully define an object, since for more complex objects it is not clear what is
defined as inside and outside. This can be illustrated in the following image:

To make the area definition unambiguous, a hierarchy can be introduced. The outermost border of an object has a
hierarchy of 1, if it has a corresponding inner border it has a hierarchy of -1. Since more complex objects might
have another outside border inside an inner border, these are denoted by a hierarchy of 2. The general definition is as
follows:

1. Outer borders are denoted by positive numbers a

2. The inner border corresponding to an outer border has a hierarchy of -a

3. The hierarchy a is equal to 1+b where b is the hierarchy of the smallest border surrounding the considered border

An example can be seen in the following image:

Using the border, which is specified as an opencv contour object as well as a name and a hierarchy a game object can
be initialized. Its documentation can be seen in rogata_library.GameObject.

2.1.1 Interacting with a Game Object

There are multiple ways to interact with Game Objects. Since contrary to conventional game engines, graphic render-
ing and physics simulation is not needed, these focus mostly on detecting collisions and ray casting.

A full overview of the functionality can be seen in rogata_library.GameObject.

2.1.2 Dynamic Game Objects

Dynamic Game Objects are a subclass of Game objects. They differ slightly in their initialization since they also keep
track of a marker ID which the engine uses to update their position. Their contour is also built automatically using the
specifications of a hitbox.

Currently, only rectangular hitboxes are supported.

2.2 Scenes

Scenes are the equivalent of video game levels. A scene defines which game objects are currently loaded and offers
the functionality to interact with them. As such it is initialized using a list of rogata_library.GameObject.

Using the objects, a scene offers several ROS communication schemes that allow other nodes to interact with the game
objects. These include the following ROS services:

2.2. Scenes 7

http://wiki.ros.org/Services

RoGaTa Engine Documentation, Release 1.0

This service allows any ROS node to change the position of a GameObject by providing the desired object’s name
NAME and a new position POS. In python the service can be set up and called using:

Set up
from rogata_engine.srv import *

set_position = rospy.ServiceProxy('set_position',SetPos)

Calling the service
req = SetosRequest(NAME,POS[0],POS[1])
resp = set_position(req)

Its returned response is a ROS service message containing a boolean value which can be called using:

resp.sucess

This service allows any ROS node to calculate the intersection of a line with starting point START, direction THETA
and length LENGTH and a desired object with name NAME. In python the service can be set up and called using:

Set up
from rogata_engine.srv import *
from geometry_msgs.msg import Pose2D

intersect = rospy.ServiceProxy('intersect_line',RequestInter)

Calling the service
line = Pose2D(START[0],START[1],THETA)
req = RequestInterRequest(GameObject,line,length)
resp = intersect(req)

Its returned response is a ROS service message containing the position of the intersection. This intersection can be
extracted using:

import numpy as np
INTERSECTION_POINT=np.array([resp.x,resp.y])

This service allows any ROS node to get the shortest distance between a point POINT and the border of an object with
name NAME .. warning:

Note that this means the distance is positive even if the point is inside the object!

In python the service can be set up and called using:

Set up
from rogata_engine.srv import *
get_distance = rospy.ServiceProxy('get_distance',RequestDist)

Calling the service
req = RequestDistRequest(NAME,POINT[0],POINT[1])
resp = get_distance(req)

It returns a ROS service message containing the distance. This distance can be extracted using:

resp.distance

This service allows any ROS node to check whether a given point POINT is inside a object with name NAME In python
the service can be set up and called using:

8 Chapter 2. How it Works

RoGaTa Engine Documentation, Release 1.0

Set up
from rogata_engine.srv import *
check_inside = rospy.ServiceProxy('check_inside',CheckInside)

Calling the Service
req = CheckInsideRequest(NAME,POINT[0],POINT[1])
resp = check_inside(req)

It returns a ROS service message containing a boolean value which is 1 if the value is inside. It can be extracted using:

resp.inside

Note: The ROS communication interface is very versatile and allows the engine to interface not only with Python
scripts but also C++ programs. However, it is also a bit cumbersome to use. For this reason, the rogata_library.
rogata_helper class can be initialized at the start of any python script. It directly implements the service setup
and abstracts it using simple class functions

Warning: Be carefull using the same instance of rogata_library.rogata_helper in multiple callbacks
or other parallel constructs, this can lead to the programm getting stuck. This happens because the same service
is called from the same instance twice and thus only one will receive an answer. Since rospy has no timeout for
services this will result in the service being stuck forever.

2.2. Scenes 9

RoGaTa Engine Documentation, Release 1.0

10 Chapter 2. How it Works

CHAPTER 3

Getting Started

The RoGaTa engine builds upon ‘Ros Noetic‘_ to interface with the robots, and OpenCV-Python to calibrate the arena
and track all dynamic objects. The first step is thus to install ROS on all robots as well as the host PC.

The host PC refers in this case to the PC which runs the engine which means that additionally OpenCV has to be
installed there.

3.1 Setting up the Environment

Once ROS and OpenCV are installed the environment of the engine has to be set up. First, a catkin workspace has to
be created. For this catkin tutorial can be followed.

The RoGaTa Engine itself is a ROS package containing nodes for camera-based sensing and a library that provides
utilities for game development. The package has to be placed inside the catkin_ws/src directory:

cd ~/catkin_ws/src
git clone https://github.com/liquidcronos/RoGaTa-Engine

Afterward, the catkin_make command has to be called inside the catkin_ws directory:

cd ..
catkin_make

If everything is correctly installed, the following command should change the current directory to the one containing
the ROS package:

roscd rogata_engine

The package installation should also install the rogata_library, a python package which allows for writing of of own
game objects and extensions to the engine.It is imported by calling

import rogata_library as rgt

11

https://docs.opencv.org/master/da/df6/tutorial_py_table_of_contents_setup.html
http://wiki.ros.org/catkin/Tutorials/create_a_workspace

RoGaTa Engine Documentation, Release 1.0

Warning: The rogata_library depends on other packages. While catkin_make should automatically resolve them,
it does not check for a minimum version. On old systems this might lead to problems. For this reason the /src
directory contains a requirements.txt file that can be used to update all the needed python packages. This is done
by calling sudo pip install -r /path/to/requirements.txt.

3.2 Setting up the Game Area

The first step in actually using the engine is to set up the game area. Since the engine needs a camera to calibrate itself
and track at least one rogata_library.dynamic_object, the first step is setting up a camera.

The Camera needs to be affixed above the game area perpendicular to the ground. In General the higher up the camera
the better since it leads to a larger game area. However, it also decreases the precision of the object tracking. This also
means that bigger markers have to be used. This can of course be circumvented by using a higher resolution camera.
Since higher resolution pictures take longer to process this could however slow down the engine depending on the
computer it’s running on.

Note: Once the camera is set up, a picture of the game area can be taken. Such a picture can be used as a reference
for the size of the game area. This prevents setting up game objects which end up partially outside of the camera view.

After the camera is installed the area itself has to be prepared. Given a desired layout of static objects, color has to be
applied to the ground to mark the borders of the object. The easiest way to do this is using colored tape.

The colors of the tape should be chosen to strongly contrast the grounds hue. An example of a prepared game area can
be seen below.

lab_setup_side.png

3.3 Setting up a Scene

Scenes can be thought of as real-life video game levels. A Scene is made up of multiple game objects whose position is
determined by a camera above the physical level. Setting up a scene thus simply means getting the engine to recognize
physical objects as game objects.

The RoGaTa engine uses a simple recognition based on the color of an object. The full theory behind the detection of
game objects can be seen in ‘How it Works‘_.

3.3.1 Calibrating the Arena

To calibrate the arena the calibrate_scene.py script can be used. It is called using:

python calibrate_scene.py PATH_TO_IMAGE

Where PATH_TO_IMAGE is the path to an image of the scene. This image has to be captured with the same stationary
camera used to later track dynamic objects. The script will open a window where one can see the image of the scene
as well as several sliders:

12 Chapter 3. Getting Started

RoGaTa Engine Documentation, Release 1.0

The first six sliders are used to select the color of the desired object. This color is specified in the HSV colorspace.
HSV refers to Hue, Saturation, and Value. A good visualization of the HSV values can be seen in this image from its
wikipedia page:

For OpenCV, The Hue Range goes from 0-179 (which is half that of the common Hue definition which goes from 0 to
359). since the Hue value is cyclical, both these values represent a type of red. While the borders between colors are
not clearly defined the following table gives an idea which hue values to pick for each object color

3.3. Setting up a Scene 13

https://en.wikipedia.org/wiki/HSL_and_HSV

RoGaTa Engine Documentation, Release 1.0

Color Hue Value Range
Red 0-30
Yellow 31-60
Green 61-90
Cyan 91-120
Blue 121-150
Mageta 151-179

Saturation and Value are defined from 0-255. The less saturated an image, the less colorful it is. Additionally the
lower its value, the darker it is.

Due to different lighting conditions across the scene, these last two values will vary for an object. For this reason, each
object also has a range slider. Each range d specifies an acceptable color interval of [VALUE-0.5d, VALUE+0.5d]
Where VALUE is the value of the main slider.

Note: For fast tuning, it is advisable to first select the desired hue value while setting the saturation and value ranges
to the maximum. From there it is easy to dial in the values until the desired object is selected.

Example values for the sliders can be seen in the following image:

As one can see there are multiple objects outlined in red. To pick the desired object to track, aruco markers are used.
If placed inside the desired object, the contour can be selected by specifying the corresponding marker ID using the
Marker ID slider.

Note: It is possible to directly specify values by clicking on the slider values on the left

Selecting Marker 1 results in the following image:

14 Chapter 3. Getting Started

RoGaTa Engine Documentation, Release 1.0

the currently selected contour is now highlighted in torques. It can now be saved by pressing s on the keyboard. The
Terminal in which the calibrate_scene.py script was called will now ask for a file name. If provided it saves the contour
as a .npy object.

This procedure can now be repeated for each contour.

If there are very small objects inside the scene such as walls or open contours such as the yellow one in the top left a
trick can be employed. Instead of using the color of the object, the color of the Ground can be used. This specifies a
contour around the desired object which can then be selected.

However, in this case, the border of the marker itself might count as a contour. To circumvent this the Minimum
Contour Size slider can be used to specify the minimum size of the chosen contour. This way it is possible to select
such open object:

3.3. Setting up a Scene 15

RoGaTa Engine Documentation, Release 1.0

However, this trick might also select other game objects such as seen here when specifying the contour of the wall:

This can be circumvented by first setting up the walls and using an image of the arena without the other objects.

3.3.2 Building Game Objects

Using the contours calibrated in the last section it is possible to set up game objects. The architecture of the game
objects is described in the how it works section. In the above example, the game area has two objects, the yellow

16 Chapter 3. Getting Started

RoGaTa Engine Documentation, Release 1.0

goals and the red line of sight breakers

Note: One can of course also have multiple objects of the same color. This is however only advisable if they behave
similarly as it might otherwise be confusing when playing or observing a game.

the first step in setting up the objects is loading the contour objects saved by calibrate_scene:

import rogata_library as rgt
import numpy as np

Setting up the goal object
left_goal = np.load('left_yellow_rectangle.npy')
right_goal = np.load('right_yellow_rectangle.npy')
goals = rgt.GameObject('goals',[left_goal,right_goal],np.array([1,1]))

Setting up the line of sight breakers
large_polygon = np.load('red_polygon.npy')
floor_trick = np.load('floor.npy')
los_breakers = rgt.GameObject('line_of_sight_breakers',

[large_polygon,floor_trick],
np.array([1,-1]))

Setting up the first object is rather straight forward, the contours are loaded and are used to initialize the game object.
The object hierachy is [1,1], since both objects are simple objects sitting side by side.

For the line of sight breakers however the floor contour trick was used. Since this mapped the inverse of
the red object, so long as one is within the floor contour one is not inside a line of sight breaker. For this
reason, the object gets a contour hierarchy of -1.

Warning: This only works because the Floor polygon does not include the large red polygon. If the floor contour
was saved before the polygon was drawn, inside the polygon would also register as being outside of the object!

In addition to the static objects on the floor, robots themself also need to be set up as a rogata_library.dynamic
object. Assuming the Robot is equipped with a marker with ID 6, it can be initialized using:

Setting up the robot object
name = "pioneer_robot"
id = 6
hit_box = {"type":"rectangle","height":30,"width":30}
robot_obj = rgt.dynamic_object(name,hit_box,id)

the hitbox specifies the space the robot takes up in the arena. For now, this has to be set manually, however, a future
script similar to calbibrate_scene.py is planned.

3.3.3 Building a Scene

Using these two objects a scene can now be built witch enables the basic functionalities of the engine. It can be set up
using:

example_scene =rgt.scene([goals,los_breakers,robot_obj])

This scene can now be packacked inside a ROS Node:

3.3. Setting up a Scene 17

RoGaTa Engine Documentation, Release 1.0

#!/usr/bin/env python
import numpy as np
import rogata_library as rgt
import rospy

Setting up the goal object
left_goal = np.load('left_yellow_rectangle.npy')
right_goal = np.load('right_yellow_rectangle.npy')
goals = rgt.GameObject('goals',[left_goal,right_goal],np.array([1,1]))

Setting up the line of sight breakers
large_polygon = np.load('red_polygon.npy')
floor_trick = np.load('floor.npy')
los_breakers = rgt.GameObject('line_of_sight_breakers',

[large_polygon,floor_trick],
np.array([1,-1])

Setting up the robot object
name = "pioneer_robot"
id = 6
hit_box = {"type":"rectangle","height":30,"width":30}
robot_obj = rgt.dynamic_object(name,hit_box,id)

if __name__ == "__main__":
try:

rospy.init_node('rogata_engine')
example_scene =rgt.scene([goals,los_breakers,robot_obj])

except rospy.ROSInterruptException:
pass

The node can be started with:

rosrun PACKAGE_NAME SCRIPT_NAME.py

But in order to be recognized the node first has to be made executable using the following command:

chmod +x SCRIPT_NAME.py

More information about ROS and what a Package is can be found in the ROS tutorials. It is strongly encouraged
that one familiarizes himself with ROS before trying to use the RoGaTa Engine.

If the scene is initialized correctly it should publish the position of the robot and provide a multitude of services. The
existence of the publisher can be checked using

rostopic echo /pioneer_robot/odom

Which should return odometry values. The services offered by the engine can be checked using

rosservice list

These should include:

• set_position

• get_distance

18 Chapter 3. Getting Started

http://wiki.ros.org/ROS/Tutorials

RoGaTa Engine Documentation, Release 1.0

• intersect_line

• check_inside

3.4 Tracking Dynamic Objects

The Tracking of dynamic objects, while a game is running, was consciously decoupled from the scene node, because
there are multiple approaches suited for different use cases.

If the objects should be tracked with a camera, the :py:function:‘rogata_library.track_dynamic_objects‘ function
can be used. Using a grayscale image it can track a list of dynamic objects. To use it with ROS one can use cv_bridge
to convert published Images of a camera node into usable images:

#!/usr/bin/env python
import sys
import cv2
import rospy
import rogata_library as rgt
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
import numpy as np

def img_call(ros_img,object_name_list):
cv_img = bridge.imgmsg_to_cv2(ros_img,'mono8')

rgt.track_dynamic_objects(cv_img,object_name_list)

if __name__ == '__main__':
try:

rospy.init_node("Dynamic Object Tracker")
bridge = CvBridge()
object_numb = len(sys.argv)
object_list = [sys.argv[i] for i in range(2,object_numb)]

cam_sub = rospy.Subscriber(sys.argv[1],Image,img_call,object_list)
rospy.spin()

except rospy.ROSInterruptException:
rospy.loginfo("Dynamic Object Tracker Node not working")

However, it is also possible to use the track_image function on a prerecorded video. In some cases, however, tracking
with a camera is not beneficial. This is why in general own functions can be written to track such objects. They can
then update the Position of the objects using the set_position service.

3.5 Using the Engine in Gazebo

One possible for such a scenario would be when using the engine inside a simulation such as Gazebo. While a
simulation already provides much of the tools the rogata engine provides it might be beneficial to be able to simulate
a given game before implementing it in the real arena.

Scenes can be set up in Gazebo the same way that normal scenes are set up, however instead of a camera the position
of dynamic objects is directly provided by the simulation.

3.4. Tracking Dynamic Objects 19

http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAndOpenCVImagesPython
http://gazebosim.org/

RoGaTa Engine Documentation, Release 1.0

Note: For robots this position is usually provided by a Odometry Topic.

However the image used for the setup is in this case not captured by the camera above the scene. Instead an arbitrary
image can be used that is then set as the ground texture in Gazebo. A tutorial of how to do this can be found here.

All that remains is to convert the odometry positions of the simulation into pixel position in the game area. Given a
specified 2 dimensional scale 𝑋𝑠𝑖𝑚 in meters in the simulation, and image dimensions 𝑋𝑔𝑎𝑚𝑒 in pixels the conversion
for a image point 𝑃𝑠𝑖𝑚 into a point 𝑃𝑔𝑎𝑚𝑒 is calculated using:

𝑃𝑔𝑎𝑚𝑒 = [𝑃𝑠𝑖𝑚𝑥,−1 * 𝑃𝑠𝑖𝑚𝑦] * ||𝑋𝑔𝑎𝑚𝑒||/||𝑋𝑠𝑖𝑚|| −𝑋𝑔𝑎𝑚𝑒/2

20 Chapter 3. Getting Started

http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom
https://answers.gazebosim.org//question/4761/how-to-build-a-world-with-real-image-as-ground-plane/

CHAPTER 4

Tutorials

4.1 Simple Scoreboards

Scoreboards a staple of Video games, defining what constitutes good play. In terms of machine learning, they also
have uses for calculating an agent’s fitness.

This simple tutorial will give an example of how to implement such a scoreboard. It will assume that the game scene
is already set up and can be accessed. For this example, the scene will include several coins that the player needs
to collect. Since each coin is independent of the rest, each coin is its own game objects and will follow the naming
convention coin/i where i is an integer smaller or equal to 12.

The complete Scoreboard code now looks like this:

#!/usr/bin/env python
import numpy as np
import rogata_library as rgt
from rogata_engine.srv import *
import rospy

class coin_scoreboard():

def __init__(self,player_list,coin_name,coin_number):
self.player_list = player_list
self.coin_name = coin_name
self.coin_number = coin_number
self.collection = {}

self.check_inside = rospy.ServiceProxy('check_inside',CheckInside)

for players in player_list:
self.collection[players] = np.zeros(self.coin_number)
rospy.Subscriber(players+"/odom",self.manage_score,players)

rospy.spin()

(continues on next page)

21

RoGaTa Engine Documentation, Release 1.0

(continued from previous page)

def manage_score(self,data,player):
point = np.array([data.pose.pose.position.x,data.pose.pose.position.x])
already_collected = self.collection[player]
for i in range(self.coin_number):

req = CheckInsideRequest("coint/"+str(i),point[0],point[1])
resp = self.check_inside(req)

already_collected[i] = already_collected[i] or resp.inside

self.collection[player] = already_collected
rospy.set_param(player+"/score",np.sum(already_collected))

if __name__ = "__main__":
rospy.init_node("score_board")
score = coin_scoreboard(["player_1","player_2"],"coin",12)

This code might seem complex, the following sections will therefore break it down line by line. The first question one
might ask beforehand is why a class is needed to implement this scoreboard. The reason for this is that it is not trivial
to store information from a subscriber outside its callback function. Class variables are simply a convenient way to
circumvent this problem.

Getting back to the code, the line

#!/usr/bin/env python

Is needed for every Python ROS Node. This first line makes sure that the script is executed with Python.

import numpy as np
import rogata_library as rgt
from rogata_engine.srv import *
from nav_msgs.msg import Pose2D
import rospy

These lines declare the needed libraries and modules. Numpy offers convenient array math functions and rospy the
ROS interface. rogata_engine.srv and Pose2D are needed to import the ROS service objects needed to call
the RoGaTa engine services.

def __init__(self,player_list,coin_name,coin_number):
self.player_list = player_list
self.coin_name = coin_name
self.coin_number = coin_number
self.collection = {}

self.check_inside = rospy.ServiceProxy('check_inside',CheckInside)

for players in player_list:
self.collection[players] = np.zeros(self.coin_number)
rospy.Subscriber(players+"/odom",Pose2D,self.manage_score,players)

rospy.spin()

The __init__ function initializes the class. In this case, this requires a list of player names, the name of the coin
object, and the coin number. The last two arguments could also have been hardcoded, but are provided here as inputs to
make the class more flexible. The function also initializes the dictionary self.collection which keeps track of
which coins have already been collected by a given player. It is populated inside the foor loop. Here also a Subscriber

22 Chapter 4. Tutorials

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
http://wiki.ros.org/ROS/Tutorials/WritingServiceClient%28python%29
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

RoGaTa Engine Documentation, Release 1.0

is set up for each player which reads in the position of each player. For this to work, the names of the players have to
refer to dynamic objects initialized in a rogata_library.scene object.

Additionally a service self.check_inside is set up to request information from the engine whether a given point
is inside an object. This will later be used to check whether a player has collected a coin.

Lastly rospy.spin() is called, which ensures that the system stays active and does not immediately terminate.

def manage_score(self,data,player):
point = np.array([data.pose.pose.position.x,data.pose.pose.position.x])
already_collected = self.collection[player]
for i in range(self.coin_number):

req = CheckInsideRequest("coint/"+str(i),point[0],point[1])
resp = self.check_inside(req)

already_collected[i] = already_collected[i] or resp.inside

self.collection[player] = already_collected
rospy.set_param(player+"/score",np.sum(already_collected))

The manage_score function is the callback of the position subscriber. This means it gets called every time the
position of the dynamic objects is updated. The returned argument data is of type Pose2D and first has to be
converted to a point. Using the current position of a player, the list of collected coins can now be updated. For each
coin, the foor loop calls the self.check_inside service to check if a new coin has been collected. The sum of all
collected coins is lastly set as a ROS parameter This allows any other ROS node to check the score of a given player
with the name PLAYERNAME by calling

rospy.get_param(PLAYERNAME/score)

4.2 Simple Line of Sight Calculation

Another Common Problem is line of sight calculation. While robots can do line of sight calculation with an onboard
camera this requires object detection. The RoGaTa engine, allows circumventing these requirements by using line
intersection. This allows the design of stealth-like games where a thief has to enter an area undetected by one or
more guards. To calculate whether a guard can see a thief the following function can be used:

import numpy as np
import rogata_library as rgt

rogata = rgt.rogata_helper()

def visibility(guard,thief,wall_objects,max_seeing_distance):
distance = np.linalg.norm(thief-guard)
direction = (thief-guard)/distance
direction = np.arctan2(direction[1],direction[0])

min_intersect = guard + max_seeing_distance * np.array([np.cos(direction),np.
→˓sin(direction)])

for walls in wall_objects:

intersection = rogata.intersect(walls,guard,direction,max_seeing_distance)
if np.linalg.norm(intersection-guard) <= np.linalg.norm(min_intersect-guard):

min_intersect = intersection

(continues on next page)

4.2. Simple Line of Sight Calculation 23

http://wiki.ros.org/Parameter%20Server

RoGaTa Engine Documentation, Release 1.0

(continued from previous page)

if np.linalg.norm(min_intersect-guard) >= distance:
return 1

else:
return 0

Here the rogata_helper class is used to abstract the get_intersection service of the engine. The Function
defines a line between guard and thief and checks if this line is intersected by an object that is not see-through.
Since multiple such walls could exist, the system accepts a list called wall_objects. If there is an intersection
between the guard and the thief the line of sight is broken and the function returns False. Otherwise, the two
see each other and the function returns True.

A visualization of the algorithm can be seen here:

4.3 Ray Casting

A laser scanner is a common tool for mobile robots that enables the use of SLAM algorithms and general navigation.
However to use such algorithms one has to build up physical walls. Additionally, some robots may not have such
sensors.

In both cases, it might be beneficial to simulate a laser scanner that interacts with game objects. This can be done
using the ray casting functionality the engine provides. A simple example of such a code can be seen here:

def laser_scanner(object_list,test_point,angles):
scan = np.zeros((len(angles),2))
for i in angles:

end_point = np.array([100000,100000])
for k in range(len(objects)):

line = Pose2D(test_point[0],test_point[1],i)
name=String()
name.data = objects[k]
req = RequestInterRequest(str(objects[k]),line,length)
response = inters(req)
new_point = np.array([response.x,response.y])

if np.linalg.norm(new_point-test_point) <= np.linalg.norm(end_point-test_
→˓point):

end_point = new_point

scan[i,:] = end_point

Where object_list is a list containing the names of the objects with which the laser scanner should intersect and
angles a list of directions in which the laser scanner measures its distance. This direction is provided using an angle
in radians convention.

Warning: Since a ray is cast out for each object to intersect with, the speed of the function scales with the number
of objects. For this reason, all walls should be defined in as few objects as possible to preserve performance.

Lastly test_point is the origin of the laser scanner in the game area. The result of the function is visualized in the
following function, where an angle range in 10-degree increments was chosen.

24 Chapter 4. Tutorials

RoGaTa Engine Documentation, Release 1.0

Note: The Stray blue line in the left top corner is an artifact of suboptimal marker placement with meant that the
contour of the outside wall goes around the marker.

4.4 Changing the Robots Dynamics

The Purpose of a game engine is of course not only to observe the movement of robots, but also to influence it. The
simplest use case is to change the dynamics of a robot depending on which area it is in. This might mean slowing
down the robot when he goes off a track, or making him unable to turn while on ice.

In both cases, this is achieved by writing a dynamics node that offers a fake command velocity subscriber and which
then publishes to the cmd_vel topic of the robot.

4.4. Changing the Robots Dynamics 25

RoGaTa Engine Documentation, Release 1.0

26 Chapter 4. Tutorials

CHAPTER 5

Code Documentation

class rogata_library.GameObject(name, area, holes)
A class defining the most basic game objects of the engine

Parameters

• name (string) – The name of the object

• area (numpy array) – A array containin all borders of the object as a contour
<https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html>

• holes (numpy array) – Array specifying which border constitutes a inner or outer bor-
der

get_position()
returns the position of the objects center

The center in this case refers to the mean position of the object. For a disjointed area this center can be
outside of the object itself.

Returns 2D position of the objects center

Return type numpy array

is_inside(point)
Checks wheter a point is inside the area of the object

A point directl on the border is also considered inside

Parameters point (2D numpy array) – A point which is to be checked

Returns a truthvalue indicating wheter or not the point is inside the game object

Return type bool

line_intersect(start, direction, length, iterations=100, precision=0.001)
calculates the intersection between a line and the border of the object

Iterations and precision are kept at standart values if non are provided

Parameters

27

RoGaTa Engine Documentation, Release 1.0

• start (numpy array) – a 2D point which specifies the start of the line

• direction (numpy array) – a vector specifiying the direction of the line (it will be
automatically normalized)

• length (scalar) – a scalar specifiying the maximum length of the line

• iterations (scalar) – the number of iterations for the ray marching algorithm used
(Default value = 100)

• precision (scalar) – the precision with which the intersection is being calculated
(Default value = 0.001)

Returns 2D position of the intersection

Return type numpy array

move_object(new_pos, rotate=0)
moves the object to a new position and orientation

Parameters

• new_pos (numpy array) – new 2D position of the object

• rotate (scalar) – angle of rotation in radians (Default value = 0)

shortest_distance(point)
calculates the shortest distance between the point and the border of the object

Also returns a positive distance when inside the object

Parameters point (numpy array) – A 2D point which is to be checked

Returns distance to border of the object

Return type scalar

class rogata_library.Scene(game_object_list)
A class implemennting scene objects comprised of multiple GameObject objects. It offers Ros Client inter-
faces which allow other nodes to request information about the game objects. the communication interfaces are
described in the documentation

Parameters game_object_list – A list of containing :py:class‘GameObject‘ objects.

handle_get_distance(request)
Handles requests to the get_distance ROS service server

Parameters request (RequestDistRequest) –

handle_get_position(request)
Handles requests to get_position ROS service server

Parameters request (GetPosRequest) –

handle_inside_check(request)
Handles requests to the check_inside ROS service server

Parameters request (CheckInsideRequest) –

handle_line_intersect(request)
Handles requests to the intersect_line ROS service server

Parameters request (RequestInterRequest) –

handle_set_position(request)
Handles requests to the set_position ROS service server

28 Chapter 5. Code Documentation

https://rogata-engine.readthedocs.io/en/latest/how_it_works.html#scenes

RoGaTa Engine Documentation, Release 1.0

Parameters request (SetPosRequest) –

rogata_library.cart2pol(cart_x, cart_y)
Converts a point (x,y) into polar coordinates (theta, rho)

rogata_library.detect_area(hsv_img, lower_color, upper_color, marker_id, min_size,
draw=False)

Detects the contour of an object containing a marker based on color

It always returns the smallest contour which still contains the marker The contour is detected using an image
with hsv color space to be robust under different lighting conditions. If draw=True the systems draws all found
contours as well as the current smalles one containing the marker onto hsv_img

Parameters

• hsv_image (numpy array) – a Image in hsv color space in which the contours should
be detected

• lower_color (numpy array) – a 3x1 array containing the lower boundary for the
color detection

• upper_color (numpy array) – a 3x1 array containing the upper boundary for the
color detection

• marker_id (scalar) – the ID of a 4x4 aruco marker which identifies the object

• hsv_img –

• min_size –

• draw – (Default value = False)

class rogata_library.dynamic_object(name, hitbox, ID, initial_ori=0)
A subclass of the basic GameObject.

Dynamic objects are able to change their position and can be tracked via aruco markers. Their current position
is published by each :py:class‘Scene‘ containing them.

Instead of initializing the object using a contour a dictionary describing a hitbox needs to be provided. The
dynamic object then builds the contour.

Currently only rectangular hitboxes are supported. The dictionary of such a hitbox can be set up as follows:

{'type':'rectangle','height':HEIGHT,'width':WIDTH}

Where HEIGHT and WIDTH are the objects height and width in the game area.

Parameters

• name (string) – The name of the object

• hitbox (dictionary) – A dictionary describing the shape of the objects contour

• ID – The ID of an aruco marker which can be used to track the object

• initial_ori – The inital orientation of the object in radians [0,2*pi]. Standart value is
0

;type number:

rogata_library.pol2cart(theta, rho)
Converts polar coordinates (theta, rho) into cartesian coordinates (x,y)

class rogata_library.rogata_helper
A class for people unfarmiliar with ROS.

29

RoGaTa Engine Documentation, Release 1.0

It abstracts the ROS service communication with the Scene class into simply python functions.

dist(game_object, point)

Abstracts the get_distance ROS service communication to get the distance between a
GameObject and a point

Parameters

• game_object (string) – The name of the game object whoose distance should be
measured

• point (2D numpy array) – the point to which the distance should be measured

get_pos(game_object)

Abstracts the get_position ROS service communication to set the position of a GameObject

Parameters game_object (string) – The name of the game object

inside(game_object, point)

Abstracts the check_inside Ros Service communication to check wheter a given point is inside of
a GameObject

Parameters

• game_object (string) – the name of the game object to check

• point (2D numpy array) – The point to check

intersect(game_object, start_point, direction, length)

Abstracts the intersect_line ROS service communication to get the intersection between a
GameObject and a line

Parameters

• game_object (string) – The name of the game object to intersect with

• start_point (2D numpy array) – The start of the line

• direction (scalar) – The direction of the line as an angle following ROS convetion

• length (scalar) – The length of the line

set_pos(game_object, position)

Abstracts the set_position ROS service communication to set the position of a GameObject

Parameters

• game_object (string) – The name of the game object

• position (2D numpy array) – The new position of the object

rogata_library.track_aruco_marker(gray_image, marker_id_list)
Tracks a list of aruco markers

Returns None if the marker was not found in gray_image

Parameters

30 Chapter 5. Code Documentation

RoGaTa Engine Documentation, Release 1.0

• gray_image – A grayscale image in which the marker is to be found

• marker_id_list (list of numbers) – A list of marker ids

Returns A dictionary of marker positions with the marker_ids as keys

rogata_library.track_dynamic_objects(gray_image, object_name_list)

Function which automatically tracks a list of dynamic_object that are part of a Scene

The functions returns no position and instead updates the internal state of each dynamic_object. This
position can be accessed using the interfaces of the Scene containing the objects.

Parameters

• gray_image – A grayscale image in which the objects should be tracked

• object_name_list – A list of containing the names of the objects that should be tracked

calibrate_scene.calibrate_colors(image)
Utility to calibrate the colors for contour detection

Allows the visual calibration of contours which can be saved by pressing the s key. Colors are defined in HSV
color space. For each Value H, S and V the median value as well as the acceptable range can be defined.
Additionally the ID of a aruco marker used to specify the wanted contour can be specified. Since this can
sometimes lead to the contour being the outline of the marker, the minimum hole size in pixels can be specified.

31

RoGaTa Engine Documentation, Release 1.0

32 Chapter 5. Code Documentation

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

33

RoGaTa Engine Documentation, Release 1.0

34 Chapter 6. Indices and tables

Python Module Index

c
calibrate_scene, 31

r
rogata_library, 27

35

RoGaTa Engine Documentation, Release 1.0

36 Python Module Index

Index

C
calibrate_colors() (in module calibrate_scene),

31
calibrate_scene (module), 31
cart2pol() (in module rogata_library), 29

D
detect_area() (in module rogata_library), 29
dist() (rogata_library.rogata_helper method), 30
dynamic_object (class in rogata_library), 29

G
GameObject (class in rogata_library), 27
get_pos() (rogata_library.rogata_helper method), 30
get_position() (rogata_library.GameObject

method), 27

H
handle_get_distance() (rogata_library.Scene

method), 28
handle_get_position() (rogata_library.Scene

method), 28
handle_inside_check() (rogata_library.Scene

method), 28
handle_line_intersect() (rogata_library.Scene

method), 28
handle_set_position() (rogata_library.Scene

method), 28

I
inside() (rogata_library.rogata_helper method), 30
intersect() (rogata_library.rogata_helper method),

30
is_inside() (rogata_library.GameObject method),

27

L
line_intersect() (rogata_library.GameObject

method), 27

M
move_object() (rogata_library.GameObject

method), 28

P
pol2cart() (in module rogata_library), 29

R
rogata_helper (class in rogata_library), 29
rogata_library (module), 27

S
Scene (class in rogata_library), 28
set_pos() (rogata_library.rogata_helper method), 30
shortest_distance() (ro-

gata_library.GameObject method), 28

T
track_aruco_marker() (in module ro-

gata_library), 30
track_dynamic_objects() (in module ro-

gata_library), 31

37

	What is the RoGaTa Engine?
	Who this engine is for

	How it Works
	Game Objects
	Scenes

	Getting Started
	Setting up the Environment
	Setting up the Game Area
	Setting up a Scene
	Tracking Dynamic Objects
	Using the Engine in Gazebo

	Tutorials
	Simple Scoreboards
	Simple Line of Sight Calculation
	Ray Casting
	Changing the Robots Dynamics

	Code Documentation
	Indices and tables
	Python Module Index
	Index

