

RoGaTa Engine Documentation

	What is the RoGaTa Engine?
	Who this engine is for

	How it Works
	Game Objects
	Interacting with a Game Object

	Dynamic Game Objects

	Scenes

	Getting Started
	Setting up the Environment

	Setting up the Game Area

	Setting up a Scene
	Calibrating the Arena

	Building Game Objects

	Building a Scene

	Tracking Dynamic Objects

	Using the Engine in Gazebo

	Tutorials
	Simple Scoreboards

	Simple Line of Sight Calculation

	Ray Casting

	Changing the Robots Dynamics

	Code Documentation

Indices and tables

	Index

	Module Index

	Search Page

 [image: _images/rogata_title_turtle.png]

What is the RoGaTa Engine?

The Robotic Games Tabletop engine is a set of ROS based software tools that bridge the gap between mobile robotics and game development.
It uses a camera to identify real objects and areas and iinitialize them as game objects.
This allows the engine to offer the same functionality a normal game engine provides.

	Example functionalities include:

	
	calculate line of sight between robots without on-board cameras.

	check if a robot has entered a specified area

	simulate laser scanner readings with virtual walls

Using these functionalities it is possible to develop video games which use real robots as actors.

Who this engine is for

Since most games require multiple robots this engine is primarily aimed at educators.
The idea being that games can be set up with students developing the ‘ai’ of the npcs thereby familiarzing themself with the development of mobile robots.

However the engine can also be used for experiments with single robots as the virtual game objects allow the simulation of sensor data such as a laser scanner.
Therefore the engine might also be usefull to researchers who need to quickly set up multiple arenas for their mobile robots, or might want to use the additional information the enigne provides for a fitness function of a machine learning approach

How it Works

The RoGaTa engine defines game objects by detecting and tracking their position using a camera affixed over the game area.
To make it quick and easy to setup a game area this is achieved using a mixture of marker based tracking and color based detection.

The game objects are are managed by scenes.
Scenes are ROS Nodes that provide service interfaces which allow interaction with the game objects.
The services of a scene can be called by other ROS nodes in order to either build higher level systems systems or provide an agent controlling a robot with additional information.
For example querrying the position of a game object called ‘cheese’ can be performed using the following codesnippet:

import rogata_library as rgt
rogata = rgt.rogata_helper()
cheese_pos = rogata.get_pos("cheese")

This code uses the rogata_helper class which abstracts the ROS communication.
The section about Scenes explains how to directly call the different services the RoGaTa engine offers.
A schematic view of the communication can be seen here:

[image: _images/rogata_communication.png]
In this example there are two ROS enabled robots in the game area.
These also share their sensor information and accept commands via ROS interfaces.
The rest of this page will go into more detail about how to build game objects and scenes.
It will also explain how the RoGaTa engine can be used to interact with these objects to build higher level systems for more complex games or control robots.

Game Objects

Game Objects are the basic building blocks of the engine.
Examples of game objects include:

	robots

	movable obstacles

	Areas

	Buttons

	Walls

In general, such an object is defined by a name as well as the space it occupies within the game area.
The simplest way to define an area is using a mask that specifies for each position whether the point is inside or outside the area.
In robotics, such a concept is sometimes also called an occupancenter_ygrid.
However, since storing and manipulating such grids is resource-intensive.
For this reason, only the borders of an object are used to define its area.

However, borders alone are not enough to fully define an object, since for more complex objects it is not clear what is defined as inside and outside.
This can be illustrated in the following image:

[image: _images/complex_object.png]
To make the area definition unambiguous, a hierarchy can be introduced.
The outermost border of an object has a hierarchy of 1, if it has a corresponding inner border it has a hierarchy of -1.
Since more complex objects might have another outside border inside an inner border, these are denoted by a hierarchy of 2.
The general definition is as follows:

	Outer borders are denoted by positive numbers a

	The inner border corresponding to an outer border has a hierarchy of -a

	The hierarchy a is equal to 1+b where b is the hierarchy of the smallest border surrounding the considered border

An example can be seen in the following image:

[image: hierachy]
Using the border, which is specified as an opencv contour object as well as a name and a hierarchy a game object can be initialized.
Its documentation can be seen in rogata_library.GameObject.

Interacting with a Game Object

There are multiple ways to interact with Game Objects.
Since contrary to conventional game engines, graphic rendering and physics simulation is not needed, these focus mostly on detecting collisions and ray casting.

A full overview of the functionality can be seen in rogata_library.GameObject.

Dynamic Game Objects

Dynamic Game Objects are a subclass of Game objects.
They differ slightly in their initialization since they also keep track of a marker ID which the engine uses to update their position.
Their contour is also built automatically using the specifications of a hitbox.

Currently, only rectangular hitboxes are supported.

Scenes

Scenes are the equivalent of video game levels.
A scene defines which game objects are currently loaded and offers the functionality to interact with them.
As such it is initialized using a list of rogata_library.GameObject.

Using the objects, a scene offers several ROS communication schemes that allow other nodes to interact with the game objects.
These include the following ROS services [http://wiki.ros.org/Services]:

This service allows any ROS node to change the position of a GameObject by providing the desired object’s name NAME and a new position POS.
In python the service can be set up and called using:

Set up
from rogata_engine.srv import *

set_position = rospy.ServiceProxy('set_position',SetPos)

Calling the service
req = SetosRequest(NAME,POS[0],POS[1])
resp = set_position(req)

Its returned response is a ROS service message containing a boolean value which can be called using:

resp.sucess

This service allows any ROS node to calculate the intersection of a line with starting point START, direction THETA and length LENGTH and a desired object with name NAME.
In python the service can be set up and called using:

Set up
from rogata_engine.srv import *
from geometry_msgs.msg import Pose2D

intersect = rospy.ServiceProxy('intersect_line',RequestInter)

Calling the service
line = Pose2D(START[0],START[1],THETA)
req = RequestInterRequest(GameObject,line,length)
resp = intersect(req)

Its returned response is a ROS service message containing the position of the intersection. This intersection can be extracted using:

import numpy as np
INTERSECTION_POINT=np.array([resp.x,resp.y])

This service allows any ROS node to get the shortest distance between a point POINT and the border of an object with name NAME
.. warning:

Note that this means the distance is positive even if the point is inside the object!

In python the service can be set up and called using:

Set up
from rogata_engine.srv import *
get_distance = rospy.ServiceProxy('get_distance',RequestDist)

Calling the service
req = RequestDistRequest(NAME,POINT[0],POINT[1])
resp = get_distance(req)

It returns a ROS service message containing the distance. This distance can be extracted using:

resp.distance

This service allows any ROS node to check whether a given point POINT is inside a object with name NAME
In python the service can be set up and called using:

Set up
from rogata_engine.srv import *
check_inside = rospy.ServiceProxy('check_inside',CheckInside)

Calling the Service
req = CheckInsideRequest(NAME,POINT[0],POINT[1])
resp = check_inside(req)

It returns a ROS service message containing a boolean value which is 1 if the value is inside.
It can be extracted using:

resp.inside

Note

The ROS communication interface is very versatile and allows the engine to interface not only with Python scripts but also C++ programs.
However, it is also a bit cumbersome to use.
For this reason, the rogata_library.rogata_helper class can be initialized at the start of any python script. It directly implements the service setup and abstracts it using simple class functions

 Getting Started

Getting Started

The RoGaTa engine builds upon `Ros Noetic`_ to interface with the robots, and OpenCV-Python [https://docs.opencv.org/master/da/df6/tutorial_py_table_of_contents_setup.html] to calibrate the arena and track all dynamic objects.
The first step is thus to install ROS on all robots as well as the host PC.

The host PC refers in this case to the PC which runs the engine which means that additionally OpenCV has to be installed there.

Setting up the Environment

Once ROS and OpenCV are installed the environment of the engine has to be set up.
First, a catkin workspace has to be created.
For this catkin tutorial [http://wiki.ros.org/catkin/Tutorials/create_a_workspace] can be followed.

The RoGaTa Engine itself is a ROS package containing nodes for camera-based sensing and a library that provides utilities for game development.
The package has to be placed inside the catkin_ws/src directory:

cd ~/catkin_ws/src
git clone https://github.com/liquidcronos/RoGaTa-Engine

Afterward, the catkin_make command has to be called inside the catkin_ws directory:

cd ..
catkin_make

If everything is correctly installed, the following command should change the current directory to the one containing the ROS package:

roscd rogata_engine

The package installation should also install the rogata_library, a python package which allows for writing of of own game objects and extensions to the engine.It is imported by calling

import rogata_library as rgt

Warning

The rogata_library depends on other packages. While catkin_make should automatically resolve them, it does not check for a minimum version.
On old systems this might lead to problems. For this reason the /src directory contains a requirements.txt file that can be used to update all the needed python packages.
This is done by calling sudo pip install -r /path/to/requirements.txt.

 Tutorials

Tutorials

Simple Scoreboards

Scoreboards a staple of Video games, defining what constitutes good play.
In terms of machine learning, they also have uses for calculating an agent’s fitness.

This simple tutorial will give an example of how to implement such a scoreboard.
It will assume that the game scene is already set up and can be accessed.
For this example, the scene will include several coins that the player needs to collect.
Since each coin is independent of the rest, each coin is its own game objects and will follow the naming convention
coin/i where i is an integer smaller or equal to 12.

The complete Scoreboard code now looks like this:

#!/usr/bin/env python
import numpy as np
import rogata_library as rgt
from rogata_engine.srv import *
import rospy

class coin_scoreboard():

 def __init__(self,player_list,coin_name,coin_number):
 self.player_list = player_list
 self.coin_name = coin_name
 self.coin_number = coin_number
 self.collection = {}

 self.check_inside = rospy.ServiceProxy('check_inside',CheckInside)

 for players in player_list:
 self.collection[players] = np.zeros(self.coin_number)
 rospy.Subscriber(players+"/odom",self.manage_score,players)

 rospy.spin()

 def manage_score(self,data,player):
 point = np.array([data.pose.pose.position.x,data.pose.pose.position.x])
 already_collected = self.collection[player]
 for i in range(self.coin_number):
 req = CheckInsideRequest("coint/"+str(i),point[0],point[1])
 resp = self.check_inside(req)

 already_collected[i] = already_collected[i] or resp.inside

 self.collection[player] = already_collected
 rospy.set_param(player+"/score",np.sum(already_collected))

if __name__ = "__main__":
 rospy.init_node("score_board")
 score = coin_scoreboard(["player_1","player_2"],"coin",12)

This code might seem complex, the following sections will therefore break it down line by line.
The first question one might ask beforehand is why a class is needed to implement this scoreboard.
The reason for this is that it is not trivial to store information from a subscriber outside its callback function [http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29].
Class variables are simply a convenient way to circumvent this problem.

Getting back to the code, the line

#!/usr/bin/env python

Is needed for every Python ROS Node. This first line makes sure that the script is executed with Python.

import numpy as np
import rogata_library as rgt
from rogata_engine.srv import *
from nav_msgs.msg import Pose2D
import rospy

These lines declare the needed libraries and modules. Numpy offers convenient array math functions and rospy the ROS interface. rogata_engine.srv and Pose2D are needed to import the ROS service [http://wiki.ros.org/ROS/Tutorials/WritingServiceClient%28python%29] objects needed to call the RoGaTa engine services.

def __init__(self,player_list,coin_name,coin_number):
 self.player_list = player_list
 self.coin_name = coin_name
 self.coin_number = coin_number
 self.collection = {}

 self.check_inside = rospy.ServiceProxy('check_inside',CheckInside)

 for players in player_list:
 self.collection[players] = np.zeros(self.coin_number)
 rospy.Subscriber(players+"/odom",Pose2D,self.manage_score,players)

 rospy.spin()

The __init__ function initializes the class. In this case, this requires a list of player names, the name of the coin object, and the coin number.
The last two arguments could also have been hardcoded, but are provided here as inputs to make the class more flexible.
The function also initializes the dictionary self.collection which keeps track of which coins have already been collected by a given player.
It is populated inside the foor loop.
Here also a Subscriber [http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29] is set up for each player which reads in the position of each player.
For this to work, the names of the players have to refer to dynamic objects initialized in a rogata_library.scene object.

Additionally a service self.check_inside is set up to request information from the engine whether a given point is inside an object.
This will later be used to check whether a player has collected a coin.

Lastly rospy.spin() is called, which ensures that the system stays active and does not immediately terminate.

def manage_score(self,data,player):
 point = np.array([data.pose.pose.position.x,data.pose.pose.position.x])
 already_collected = self.collection[player]
 for i in range(self.coin_number):
 req = CheckInsideRequest("coint/"+str(i),point[0],point[1])
 resp = self.check_inside(req)

 already_collected[i] = already_collected[i] or resp.inside

 self.collection[player] = already_collected
 rospy.set_param(player+"/score",np.sum(already_collected))

The manage_score function is the callback of the position subscriber. This means it gets called every time the position of the dynamic objects is updated.
The returned argument data is of type Pose2D and first has to be converted to a point.
Using the current position of a player, the list of collected coins can now be updated. For each coin, the foor loop calls the self.check_inside service to check if a new coin has been collected.
The sum of all collected coins is lastly set as a ROS parameter [http://wiki.ros.org/Parameter%20Server]
This allows any other ROS node to check the score of a given player with the name PLAYERNAME by calling

rospy.get_param(PLAYERNAME/score)

Simple Line of Sight Calculation

Another Common Problem is line of sight calculation.
While robots can do line of sight calculation with an onboard camera this requires object detection.
The RoGaTa engine, allows circumventing these requirements by using line intersection.
This allows the design of stealth-like games where a thief has to enter an area undetected by one or more guards.
To calculate whether a guard can see a thief the following function can be used:

import numpy as np
import rogata_library as rgt

rogata = rgt.rogata_helper()

def visibility(guard,thief,wall_objects,max_seeing_distance):
 distance = np.linalg.norm(thief-guard)
 direction = (thief-guard)/distance
 direction = np.arctan2(direction[1],direction[0])

 min_intersect = guard + max_seeing_distance * np.array([np.cos(direction),np.sin(direction)])

 for walls in wall_objects:

 intersection = rogata.intersect(walls,guard,direction,max_seeing_distance)
 if np.linalg.norm(intersection-guard) <= np.linalg.norm(min_intersect-guard):
 min_intersect = intersection

 if np.linalg.norm(min_intersect-guard) >= distance:
 return 1
 else:
 return 0

Here the rogata_helper class is used to abstract the get_intersection service of the engine.
The Function defines a line between guard and thief and checks if this line is intersected by an object that is not see-through.
Since multiple such walls could exist, the system accepts a list called wall_objects.
If there is an intersection between the guard and the thief the line of sight is broken and the function returns False.
Otherwise, the two see each other and the function returns True.

A visualization of the algorithm can be seen here:

[image: _images/visibility_example.gif]

Ray Casting

A laser scanner is a common tool for mobile robots that enables the use of SLAM algorithms and general navigation.
However to use such algorithms one has to build up physical walls.
Additionally, some robots may not have such sensors.

In both cases, it might be beneficial to simulate a laser scanner that interacts with game objects.
This can be done using the ray casting functionality the engine provides.
A simple example of such a code can be seen here:

def laser_scanner(object_list,test_point,angles):
 scan = np.zeros((len(angles),2))
 for i in angles:
 end_point = np.array([100000,100000])
 for k in range(len(objects)):
 line = Pose2D(test_point[0],test_point[1],i)
 name=String()
 name.data = objects[k]
 req = RequestInterRequest(str(objects[k]),line,length)
 response = inters(req)
 new_point = np.array([response.x,response.y])

 if np.linalg.norm(new_point-test_point) <= np.linalg.norm(end_point-test_point):
 end_point = new_point

 scan[i,:] = end_point

Where object_list is a list containing the names of the objects with which the laser scanner should intersect and angles a list of directions in which the laser scanner measures its distance. This direction is provided using an angle in radians convention.

Warning

Since a ray is cast out for each object to intersect with, the speed of the function scales with the number of objects.
For this reason, all walls should be defined in as few objects as possible to preserve performance.

 Code Documentation

Code Documentation

	
class rogata_library.GameObject(name, area, holes)[source]

	A class defining the most basic game objects of the engine

	Parameters:

	
	name (string) – The name of the object

	area (numpy array) – A array containin all borders of the object
as a contour <https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html>

	holes (numpy array) – Array specifying which border constitutes a inner or outer border

	
get_position()[source]

	returns the position of the objects center

The center in this case refers to the mean position of the object.
For a disjointed area this center can be outside of the object itself.

	Returns:

	2D position of the objects center

	Return type:

	numpy array

	
is_inside(point)[source]

	Checks wheter a point is inside the area of the object

A point directl on the border is also considered inside

	Parameters:

	point (2D numpy array) – A point which is to be checked

	Returns:

	a truthvalue indicating wheter or not the point is inside the game object

	Return type:

	bool

	
line_intersect(start, direction, length, iterations=100, precision=0.001)[source]

	calculates the intersection between a line and the border of the object

Iterations and precision are kept at standart values if non are provided

	Parameters:

	
	start (numpy array) – a 2D point which specifies the start of the line

	direction (numpy array) – a vector specifiying the direction of the line
(it will be automatically normalized)

	length (scalar) – a scalar specifiying the maximum length of the line

	iterations (scalar) – the number of iterations for the ray marching algorithm used
(Default value = 100)

	precision (scalar) – the precision with which the intersection is being calculated
(Default value = 0.001)

	Returns:

	2D position of the intersection

	Return type:

	numpy array

	
move_object(new_pos, rotate=0)[source]

	moves the object to a new position and orientation

	Parameters:

	
	new_pos (numpy array) – new 2D position of the object

	rotate (scalar) – angle of rotation in radians (Default value = 0)

	
shortest_distance(point)[source]

	calculates the shortest distance between the point and the border of the object

Also returns a positive distance when inside the object

	Parameters:

	point (numpy array) – A 2D point which is to be checked

	Returns:

	distance to border of the object

	Return type:

	scalar

	
class rogata_library.Scene(game_object_list)[source]

	A class implemennting scene objects comprised of multiple GameObject objects.
It offers Ros Client interfaces which allow
other nodes to request information about the game objects.
the communication interfaces are described in the
documentation [https://rogata-engine.readthedocs.io/en/latest/how_it_works.html#scenes]

	Parameters:

	game_object_list – A list of containing :py:class`GameObject` objects.

	
handle_get_distance(request)[source]

	Handles requests to the get_distance ROS service server

	Parameters:

	request (RequestDistRequest) –

	
handle_get_position(request)[source]

	Handles requests to get_position ROS service server

	Parameters:

	request (GetPosRequest) –

	
handle_inside_check(request)[source]

	Handles requests to the check_inside ROS service server

	Parameters:

	request (CheckInsideRequest) –

	
handle_line_intersect(request)[source]

	Handles requests to the intersect_line ROS service server

	Parameters:

	request (RequestInterRequest) –

	
handle_set_position(request)[source]

	Handles requests to the set_position ROS service server

	Parameters:

	request (SetPosRequest) –

	
rogata_library.cart2pol(cart_x, cart_y)[source]

	Converts a point (x,y) into polar coordinates (theta, rho)

	
rogata_library.detect_area(hsv_img, lower_color, upper_color, marker_id, min_size, draw=False)[source]

	Detects the contour of an object containing a marker based on color

It always returns the smallest contour which still contains the marker
The contour is detected using an image with hsv color space
to be robust under different lighting conditions.
If draw=True the systems draws all found contours
as well as the current smalles one containing the marker onto hsv_img

	Parameters:

	
	hsv_image (numpy array) – a Image in hsv color space in which the contours should be detected

	lower_color (numpy array) – a 3x1 array containing the lower boundary for the color detection

	upper_color (numpy array) – a 3x1 array containing the upper boundary for the color detection

	marker_id (scalar) – the ID of a 4x4 aruco marker which identifies the object

	hsv_img –

	min_size –

	draw – (Default value = False)

	
class rogata_library.dynamic_object(name, hitbox, ID, initial_ori=0)[source]

	A subclass of the basic GameObject.

Dynamic objects are able to change their position and can be tracked via aruco markers.
Their current position is published by each :py:class`Scene` containing them.

Instead of initializing the object using a contour
a dictionary describing a hitbox needs to be provided.
The dynamic object then builds the contour.

Currently only rectangular hitboxes are supported.
The dictionary of such a hitbox can be set up as follows:

{'type':'rectangle','height':HEIGHT,'width':WIDTH}

Where HEIGHT and WIDTH are the objects height and width in the game area.

	Parameters:

	
	name (string) – The name of the object

	hitbox (dictionary) – A dictionary describing the shape of the objects contour

	ID – The ID of an aruco marker which can be used to track the object

	initial_ori – The inital orientation of the object in radians [0,2*pi].
Standart value is 0

;type number:

	
rogata_library.pol2cart(theta, rho)[source]

	Converts polar coordinates (theta, rho) into cartesian coordinates (x,y)

	
class rogata_library.rogata_helper[source]

	A class for people unfarmiliar with ROS.

It abstracts the ROS service communication with the
Scene class into simply python functions.

	
dist(game_object, point)[source]

	
	Abstracts the get_distance ROS service communication

	to get the distance between a GameObject and a point

	Parameters:

	
	game_object (string) – The name of the game object whoose distance should be measured

	point (2D numpy array) – the point to which the distance should be measured

	
get_pos(game_object)[source]

	
	Abstracts the get_position ROS service communication

	to set the position of a GameObject

	Parameters:

	game_object (string) – The name of the game object

	
inside(game_object, point)[source]

	
	Abstracts the check_inside Ros Service communication

	to check wheter a given point is inside of a GameObject

	Parameters:

	
	game_object (string) – the name of the game object to check

	point (2D numpy array) – The point to check

	
intersect(game_object, start_point, direction, length)[source]

	
	Abstracts the intersect_line ROS service communication

	to get the intersection between a GameObject and a line

	Parameters:

	
	game_object (string) – The name of the game object to intersect with

	start_point (2D numpy array) – The start of the line

	direction (scalar) – The direction of the line as an angle following ROS convetion

	length (scalar) – The length of the line

	
set_pos(game_object, position)[source]

	
	Abstracts the set_position ROS service communication

	to set the position of a GameObject

	Parameters:

	
	game_object (string) – The name of the game object

	position (2D numpy array) – The new position of the object

	
rogata_library.track_aruco_marker(gray_image, marker_id_list)[source]

	Tracks a list of aruco markers

Returns None if the marker was not found in gray_image

	Parameters:

	
	gray_image – A grayscale image in which the marker is to be found

	marker_id_list (list of numbers) – A list of marker ids

	Returns:

	A dictionary of marker positions with the marker_ids as keys

	
rogata_library.track_dynamic_objects(gray_image, object_name_list)[source]

	
	Function which automatically tracks a list of dynamic_object

	that are part of a Scene

The functions returns no position and instead
updates the internal state of each dynamic_object.
This position can be accessed using
the interfaces of the Scene containing the objects.

	Parameters:

	
	gray_image – A grayscale image in which the objects should be tracked

	object_name_list – A list of containing the names of the objects that should be tracked

	
calibrate_scene.calibrate_colors(image)[source]

	Utility to calibrate the colors for contour detection

Allows the visual calibration of contours which can be saved by pressing the s key.
Colors are defined in HSV color space.
For each Value H, S and V the median value as well as the acceptable range can be defined.
Additionally the ID of a aruco marker used to specify the wanted contour can be specified.
Since this can sometimes lead to the contour being the outline of the marker,
the minimum hole size in pixels can be specified.

 Python Module Index

 Python Module Index

 c |
 r

 		 	

 		
 c	

 	
 	
 calibrate_scene	

 		 	

 		
 r	

 	
 	
 rogata_library	

 Index

Index

 C
 | D
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T

C

 	
 	calibrate_colors() (in module calibrate_scene)

 	
 	calibrate_scene (module)

 	cart2pol() (in module rogata_library)

D

 	
 	detect_area() (in module rogata_library)

 	
 	dist() (rogata_library.rogata_helper method)

 	dynamic_object (class in rogata_library)

G

 	
 	GameObject (class in rogata_library)

 	
 	get_pos() (rogata_library.rogata_helper method)

 	get_position() (rogata_library.GameObject method)

H

 	
 	handle_get_distance() (rogata_library.Scene method)

 	handle_get_position() (rogata_library.Scene method)

 	
 	handle_inside_check() (rogata_library.Scene method)

 	handle_line_intersect() (rogata_library.Scene method)

 	handle_set_position() (rogata_library.Scene method)

I

 	
 	inside() (rogata_library.rogata_helper method)

 	
 	intersect() (rogata_library.rogata_helper method)

 	is_inside() (rogata_library.GameObject method)

L

 	
 	line_intersect() (rogata_library.GameObject method)

M

 	
 	move_object() (rogata_library.GameObject method)

P

 	
 	pol2cart() (in module rogata_library)

R

 	
 	rogata_helper (class in rogata_library)

 	
 	rogata_library (module)

S

 	
 	Scene (class in rogata_library)

 	
 	set_pos() (rogata_library.rogata_helper method)

 	shortest_distance() (rogata_library.GameObject method)

T

 	
 	track_aruco_marker() (in module rogata_library)

 	
 	track_dynamic_objects() (in module rogata_library)

 calibrate_scene

 Source code for calibrate_scene

#!/usr/bin/env python
import sys
import cv2
import cv2.aruco as aruco
import numpy as np

import rogata_library as rgt

[docs]def calibrate_colors(image):
 """Utility to calibrate the colors for contour detection

 Allows the visual calibration of contours which can be saved by pressing the s key.
 Colors are defined in HSV color space.
 For each Value H, S and V the median value as well as the acceptable range can be defined.
 Additionally the ID of a aruco marker used to specify the wanted contour can be specified.
 Since this can sometimes lead to the contour being the outline of the marker,
 the minimum hole size in pixels can be specified.
 """

 def nothing(_):
 pass
 cv2.namedWindow("Test image")
 cv2.createTrackbar("H", "Test image", 0, 179, nothing)
 cv2.createTrackbar("H range", "Test image", 0, 50, nothing)
 cv2.createTrackbar("S", "Test image", 0, 255, nothing)
 cv2.createTrackbar("S range", "Test image", 0, 120, nothing)
 cv2.createTrackbar("V", "Test image", 0, 255, nothing)
 cv2.createTrackbar("V range", "Test image", 0, 120, nothing)
 cv2.createTrackbar("Marker Id", "Test image", 0, 120, nothing)
 hight, width, _ = image.shape
 cv2.createTrackbar("Minimum contour size", "Test image",
 0, hight*width, nothing)
 while(1):

 mid_color = np.array([cv2.getTrackbarPos("H", "Test image"),
 cv2.getTrackbarPos("S", "Test image"),
 cv2.getTrackbarPos("V", "Test image")])

 step = np.array([cv2.getTrackbarPos("H range", "Test image"),
 cv2.getTrackbarPos("S range", "Test image"),
 cv2.getTrackbarPos("V range", "Test image")])

 marker_id = cv2.getTrackbarPos("Marker Id", "Test image")

 min_size = cv2.getTrackbarPos('Minimum contour size', 'Test image')

 min_value = np.zeros(3)
 min_value[0] = -179
 max_value = np.array([179, 255, 255])
 lower_bound = np.clip(mid_color-step, min_value, max_value)
 upper_bound = np.clip(mid_color+step, min_value, max_value)

 used_img = image.copy()
 hsv_img = cv2.cvtColor(used_img, cv2.COLOR_BGR2HSV)

 find_contour = rgt.detect_area(
 hsv_img, lower_bound, upper_bound, marker_id, min_size, True)
 natural_img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
 cv2.imshow("Test image", natural_img)

 k = cv2.waitKey(1)
 if k == 27:
 break
 if k == ord('s'):
 print("Please Enter a File name:")
 file_name = raw_input()
 np.save(file_name, find_contour)
 print("File ", file_name, " saved.")

if __name__ == "__main__":
 image = cv2.imread(sys.argv[1])
 calibrate_colors(image)

 Overview: module code

 All modules for which code is available

	calibrate_scene

	rogata_library

 rogata_library

 Source code for rogata_library

import warnings
import numpy as np
import cv2
import cv2.aruco as aruco
import rospy

from geometry_msgs.msg import Pose2D
from nav_msgs.msg import Odometry

from rogata_engine.srv import SetPos, GetPos, RequestDist, RequestInter, CheckInside
from rogata_engine.srv import SetPosResponse, GetPosResponse, RequestDistResponse
from rogata_engine.srv import RequestInterResponse, CheckInsideResponse
from rogata_engine.srv import SetPosRequest, GetPosRequest, RequestDistRequest
from rogata_engine.srv import RequestInterRequest, CheckInsideRequest

[docs]class GameObject:
 """A class defining the most basic game objects of the engine

 :param string name: The name of the object
 :param area: A array containin all borders of the object
 as a `contour <https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html>`
 :type area: numpy array
 :param holes: Array specifying which border constitutes a inner or outer border
 :type holes: numpy array
 """

 def __init__(self, name, area, holes):

 if not isinstance(name, str):
 raise TypeError("An objects name must be a string")
 if len(area) != len(holes):
 raise IndexError("Different number of hierachies and hole specification. " +
 "Each border should have a corresponding hole specification, see" +
 "https: // rogata-engine.readthedocs.io/en/latest/how_it_works.html " +
 "# game-objects ." +
 "This error often happens if one has forgotten " +
 "one ore more entries in the holes specification.")
 if sum(holes) < 0:
 warnings.warn("There appear to be more inner borders than outer borders. " +
 "While this is possible to allow for more complex objects," +
 "it often happens due to an error in the holes specification. See " +
 "https: // rogata-engine.readthedocs.io/en/latest/how_it_works.html " +
 "# game-objects" +
 " for more information.", stacklevel=2)

 self.name = name
 self.area = area
 self.holes = holes

 def __str__(self):
 return self.name

[docs] def is_inside(self, point):
 """Checks wheter a point is inside the area of the object

 A point directl on the border is also considered inside

 :param point: A point which is to be checked
 :type point: 2D numpy array
 :returns: a truthvalue indicating wheter or not the point is inside the game object
 :rtype: bool

 """

 point = tuple(point)

 inside_contour = np.zeros(len(self.area))
 for i in range(len(self.area)):
 inside_contour[i] = cv2.pointPolygonTest(
 self.area[i], point, False) != -1

 inside = False
 for i in range(int(min(np.abs(self.holes))), int(max(np.abs(self.holes)))+1):
 holes = np.argwhere(self.holes == -i)
 areas = np.argwhere(self.holes == i)

 inside_hole = False
 for hole in holes:
 inside_hole = inside_hole or inside_contour[hole]

 inside_area = False
 for area in areas:
 inside_area = inside_area or inside_contour[area]

 inside = inside or (inside_area and not inside_hole)

 return bool(inside)

[docs] def shortest_distance(self, point):
 """calculates the shortest distance between the point and the border of the object

 Also returns a positive distance when inside the object

 :param point: A 2D point which is to be checked
 :type point: numpy array
 :returns: distance to border of the object
 :rtype: scalar

 """

 point = tuple(point)
 min_dist = np.inf
 for i in range(len(self.area)):
 min_dist = np.minimum(
 np.abs(cv2.pointPolygonTest(self.area[i], point, True)), min_dist)
 return min_dist

[docs] def line_intersect(self, start, direction, length, iterations=100, precision=0.001):
 """calculates the intersection between a line and the border of the object

 Iterations and precision are kept at standart values if non are provided

 :param start: a 2D point which specifies the start of the line
 :type start: numpy array
 :param direction: a vector specifiying the direction of the line
 (it will be automatically normalized)
 :type direction: numpy array
 :param length: a scalar specifiying the maximum length of the line
 :type length: scalar
 :param iterations: the number of iterations for the ray marching algorithm used
 (Default value = 100)
 :type iterations: scalar
 :param precision: the precision with which the intersection is being calculated
 (Default value = 0.001)
 :type precision: scalar
 :returns: 2D position of the intersection
 :rtype: numpy array

 """

 vec_len = np.linalg.norm(direction)
 if vec_len != 1:
 warnings.warn("The input direction vector was normalized. " +
 "Make sure that you intended to send a non normalized direction vector.",
 stacklevel=2)
 if length <= 0:
 raise ValueError("The specified length was equal or smaller than zero. " +
 "In general the length of a line has to be a positive number")

 position = start
 default = start+length*direction/vec_len
 for _ in range(iterations):
 shortest_dist = self.shortest_distance(position)
 position = position + shortest_dist*direction/vec_len

 if np.linalg.norm(position-start) >= length:
 break
 if shortest_dist <= precision:
 default = position
 break

 return default

[docs] def get_position(self):
 """returns the position of the objects center

 The center in this case refers to the mean position of the object.
 For a disjointed area this center can be outside of the object itself.

 :returns: 2D position of the objects center

 :rtype: numpy array

 """
 if len(self.area) > 1:
 warnings.warn("""Carefull, the desired objects is made up of multiple shapes.
The returned position will be the mean position of all shapes.
To get the position of each shape, initialize each as its own object.""", stacklevel=2)

 center_x = 0
 center_y = 0
 size = 0
 for contours in self.area:
 moments = cv2.moments(contours)
 center_x = center_x + moments['m10']
 center_y = center_y + moments['m01']
 size = size + moments['m00']
 return np.array([int(center_x/float(size)), int(center_y/float(size))])

[docs] def move_object(self, new_pos, rotate=0):
 """moves the object to a new position and orientation

 :param new_pos: new 2D position of the object
 :type new_pos: numpy array
 :param rotate: angle of rotation in radians (Default value = 0)
 :type rotate: scalar

 """
 center_x = 0
 center_y = 0
 size = 0
 for contours in self.area:
 moments = cv2.moments(contours)
 center_x = center_x + moments['m10']
 center_y = center_y + moments['m01']
 size = size + moments['m00']
 current_center = np.array(
 [int(center_x/float(size)), int(center_y/float(size))])
 # current_center = self.get_position()
 for i in range(len(self.area)):
 centered_contour = self.area[i] - current_center
 # xs, ys = centered_contour[:, 0], centered_contour[:, 1]

 # thetas, rhos = cart2pol(xs, ys)
 # thetas = thetas + rotate
 # xs, ys = pol2cart(thetas, rhos)

 # centered_contour[:,0] = xs
 # centered_contour[:,1] = ys
 self.area[i] = centered_contour+new_pos

[docs]class dynamic_object(GameObject):
 """A subclass of the basic :py:class:`GameObject`.

 Dynamic objects are able to change their position and can be tracked via aruco markers.
 Their current position is published by each :py:class`Scene` containing them.

 Instead of initializing the object using a contour
 a dictionary describing a hitbox needs to be provided.
 The dynamic object then builds the contour.

 Currently only rectangular hitboxes are supported.
 The dictionary of such a hitbox can be set up as follows:
 ::

 {'type':'rectangle','height':HEIGHT,'width':WIDTH}

 Where HEIGHT and WIDTH are the objects height and width in the game area.

 :param string name: The name of the object
 :param hitbox: A dictionary describing the shape of the objects contour
 :type hitbox: dictionary
 :param ID: The ID of an aruco marker which can be used to track the object
 :param initial_ori: The inital orientation of the object in radians [0,2*pi].
 Standart value is 0
 ;type number:
 """

 def __init__(self, name, hitbox, ID, initial_ori=0):
 supported_keys = ['rectange']
 if not hitbox['type'] in supported_keys:
 raise KeyError("The object shape "+hitbox['type'] +
 " is currently not supported. \n Supported shapes are:"+supported_keys)
 if not (ID-int(ID) == 0) or (ID < 0):
 raise ValueError("Valid dynamic object IDs must be integers")
 if not 0 <= initial_ori <= 2*np.pi:
 raise ValueError(
 "The orientation of a dynamic object is defined only on the range [0,2*pi]")

 if hitbox['type'] == 'rectangle':
 height = hitbox['height']
 width = hitbox['width']
 area = np.array([[0, 0], [0, height], [width, height], [
 width, 0]], dtype=np.int32)

 holes = np.array([1])
 GameObject.__init__(self, name, np.array([area]), holes)

 self.ID = ID
 self.orientation = initial_ori

[docs]class Scene():
 """A class implemennting scene objects comprised of multiple :py:class:`GameObject` objects.
 It offers Ros Client interfaces which allow
 other nodes to request information about the game objects.
 the communication interfaces are described in the
 `documentation <https://rogata-engine.readthedocs.io/en/latest/how_it_works.html#scenes>`_

 :param game_object_list: A list of containing :py:class`GameObject` objects.
 """

 def __init__(self, game_object_list):
 if rospy.has_param("scene_objects"):
 raise RuntimeError("More than one Scene is currently active. " +
 "Please unload the old Scene before starting a new one.")
 for objects in game_object_list:
 if not isinstance(objects, GameObject):
 raise TypeError("One or more Inputs is not a GameObject")

 self.game_objects = {}
 self.object_list = []
 self.dynamic_object_list = []
 for objects in game_object_list:
 self.game_objects[objects.name] = objects
 self.object_list.append(objects.name)
 if isinstance(objects, dynamic_object):
 rospy.set_param(objects.name+"/id", objects.ID)
 self.dynamic_object_list.append(objects.name)

 rospy.set_param("scene_objects", self.object_list)

 pos_serv = rospy.Service(
 'set_position', SetPos, self.handle_set_position)
 pos_g_serv = rospy.Service(
 'get_position', GetPos, self.handle_get_position)
 dist_serv = rospy.Service(
 'get_distance', RequestDist, self.handle_get_distance)
 inters_serv = rospy.Service(
 'intersect_line', RequestInter, self.handle_line_intersect)
 inside_serv = rospy.Service(
 'check_inside', CheckInside, self.handle_inside_check)

 publisher_dict = {}
 for object_names in self.dynamic_object_list:
 publisher_dict[object_names] = rospy.Publisher(
 object_names+"/odom", Odometry, queue_size=1)

 rate = rospy.Rate(30) # hz
 while not rospy.is_shutdown():
 for object_names in self.dynamic_object_list:
 current_object = self.game_objects[object_names]
 current_publisher = publisher_dict[object_names]
 pose = current_object.get_position()

 position = Odometry()
 position.pose.pose.position.x = pose[0]
 position.pose.pose.position.y = pose[1]
 position.pose.pose.orientation.z = current_object.orientation
 current_publisher.publish(position)
 rate.sleep()

 def __del__(self):
 for elements in self.object_list:
 if rospy.has_param(elements+"_id"):
 rospy.delete_param(elements+"_id")
 if rospy.has_param("scene_objects"):
 rospy.delete_param("scene_objects")

[docs] def handle_set_position(self, request):
 """Handles requests to the ``set_position`` ROS service server

 :param request:
 :type request: SetPosRequest

 """
 if not request.object in self.object_list:
 raise KeyError("No GameObject named " + request.object +
 "A list of current GameObjects is set as ros parameter scene_objects")

 choosen_object = self.game_objects[request.object]
 pos = np.array([request.x, request.y])
 choosen_object.move_object(pos)
 return SetPosResponse(1)

[docs] def handle_get_position(self, request):
 """Handles requests to ``get_position`` ROS service server

 :param request:
 :type request: GetPosRequest

 """
 if not request.object in self.object_list:
 raise KeyError("No GameObject named " + request.object +
 "A list of current GameObjects is set as ros parameter scene_objects")

 choosen_object = self.game_objects[request.object]
 pos = choosen_object.get_position()
 return GetPosResponse(pos[0], pos[1])

[docs] def handle_line_intersect(self, request):
 """Handles requests to the ``intersect_line`` ROS service server

 :param request:
 :type request: RequestInterRequest

 """
 if not request.object in self.object_list:
 raise KeyError("No GameObject named " + request.object +
 "A list of current GameObjects is set as ros parameter scene_objects")

 choosen_object = self.game_objects[request.object]
 origin = np.array([request.line.x, request.line.y])
 direction = np.array(
 [np.cos(request.line.theta), np.sin(request.line.theta)])
 length = request.length
 intersect = choosen_object.line_intersect(origin, direction, length)
 return RequestInterResponse(intersect[0], intersect[1])

[docs] def handle_get_distance(self, request):
 """Handles requests to the ``get_distance`` ROS service server

 :param request:
 :type request: RequestDistRequest

 """
 if not request.object in self.object_list:
 raise KeyError("No GameObject named " + request.object +
 "A list of current GameObjects is set as ros parameter scene_objects")

 choosen_object = self.game_objects[request.object]
 point = np.array([request.x, request.y])
 dist = choosen_object.shortest_distance(point)
 return RequestDistResponse(dist)

[docs] def handle_inside_check(self, request):
 """Handles requests to the ``check_inside`` ROS service server

 :param request:
 :type request: CheckInsideRequest

 """
 if not request.object in self.object_list:
 raise KeyError("No GameObject named " + request.object +
 "A list of current GameObjects is set as ros parameter scene_objects")

 choosen_object = self.game_objects[request.object]
 point = np.array([request.x, request.y])
 inside = bool(choosen_object.is_inside(point))
 return CheckInsideResponse(inside)

[docs]class rogata_helper():
 """A class for people unfarmiliar with ROS.

 It abstracts the ROS service communication with the
 :py:class:`Scene` class into simply python functions.

 """

 def __init__(self):
 rospy.wait_for_service('intersect_line')
 self.available_objects = rospy.get_param("scene_objects")

 self.abstract_set_position = rospy.ServiceProxy(
 'set_position', SetPos, self.set_pos)
 self.abstract_get_position = rospy.ServiceProxy(
 'get_position', GetPos, self.get_pos)
 self.abstract_line_intersect = rospy.ServiceProxy(
 'intersect_line', RequestInter, self.intersect)
 self.abstract_get_distance = rospy.ServiceProxy(
 'get_distance', RequestDist, self.dist)
 self.abstract_check_inside = rospy.ServiceProxy(
 'check_inside', CheckInside, self.inside)

[docs] def set_pos(self, game_object, position):
 """Abstracts the ``set_position`` ROS service communication
 to set the position of a :py:class:`GameObject`

 :param game_object: The name of the game object
 :type game_object: string
 :param position: The new position of the object
 :type position: 2D numpy array

 """
 req = SetPosRequest(game_object, position[0], position[1])
 try:
 rospy.wait_for_service('set_position', 0.5)
 resp = self.abstract_set_position(req)
 return resp
 except rospy.ServiceException as exception:
 print("Service call failed: %s" % exception)

[docs] def get_pos(self, game_object):
 """Abstracts the ``get_position`` ROS service communication
 to set the position of a :py:class:`GameObject`

 :param game_object: The name of the game object
 :type game_object: string

 """
 req = GetPosRequest(game_object)
 try:
 rospy.wait_for_service('get_position', 0.5)
 resp = self.abstract_get_position(req)
 return np.array([resp.x, resp.y])
 except rospy.ServiceException as exception:
 print("Service call failed: %s" % exception)

[docs] def intersect(self, game_object, start_point, direction, length):
 """Abstracts the ``intersect_line`` ROS service communication
 to get the intersection between a :py:class:`GameObject` and a line

 :param game_object: The name of the game object to intersect with
 :type game_object: string
 :param start_point: The start of the line
 :type start_point: 2D numpy array
 :param direction: The direction of the line as an angle following ROS convetion
 :type direction: scalar
 :param length: The length of the line
 :type length: scalar

 """
 line = Pose2D(start_point[0], start_point[1], direction)
 req = RequestInterRequest(game_object, line, length)
 try:
 rospy.wait_for_service('intersect_line', 0.5)
 resp = self.abstract_line_intersect(req)
 return np.array([resp.x, resp.y])
 except rospy.ServiceException as exception:
 print("Service call failed: %s" % exception)

[docs] def dist(self, game_object, point):
 """Abstracts the ``get_distance`` ROS service communication
 to get the distance between a :py:class:`GameObject` and a point

 :param game_object: The name of the game object whoose distance should be measured
 :type game_object: string
 :param point: the point to which the distance should be measured
 :type point: 2D numpy array

 """
 req = RequestDistRequest(game_object, point[0], point[1])
 try:
 rospy.wait_for_service('get_distance', 0.5)
 resp = self.abstract_get_distance(req)
 return resp.distance
 except rospy.ServiceException as exception:
 print("Service call failed: %s" % exception)

[docs] def inside(self, game_object, point):
 """Abstracts the ``check_inside`` Ros Service communication
 to check wheter a given point is inside of a :py:class:`GameObject`

 :param game_object: the name of the game object to check
 :type game_object: string
 :param point: The point to check
 :type point: 2D numpy array

 """
 req = CheckInsideRequest(game_object, point[0], point[1])
 try:
 rospy.wait_for_service('check_inside', 0.5)
 resp = self.abstract_check_inside(req)
 return resp.inside
 except rospy.ServiceException as exception:
 print("Service call failed: %s" % exception)

[docs]def track_dynamic_objects(gray_image, object_name_list):
 """Function which automatically tracks a list of :py:class:`dynamic_object`
 that are part of a :py:class:`Scene`

 The functions returns no position and instead
 updates the internal state of each :py:class:`dynamic_object`.
 This position can be accessed using
 the interfaces of the :py:class:`Scene` containing the objects.

 :param gray_image: A grayscale image in which the objects should be tracked
 :param object_name_list: A list of containing the names of the objects that should be tracked

 """

 set_position = rospy.ServiceProxy('set_position', SetPos)
 available_marker_list = []
 available_marker_id_list = []
 for object_name in object_name_list:
 if rospy.has_param(object_name+"_id"):
 marker_id = rospy.get_param(object_name+"_id")

 available_marker_id_list.append(marker_id)
 available_marker_list.append(object_name)

 new_pos_dict = track_aruco_marker(gray_image, available_marker_id_list)

 for i in range(len(available_marker_id_list)):
 object_name = available_marker_list[i]
 new_pos = new_pos_dict[available_marker_id_list[i]]
 req = SetPosRequest(object_name, new_pos[0], new_pos[1])
 resp = set_position(req)
 return 1
 else:
 return 0

[docs]def track_aruco_marker(gray_image, marker_id_list):
 """Tracks a list of aruco markers

 Returns None if the marker was not found in gray_image

 :param gray_image: A grayscale image in which the marker is to be found
 :param marker_id_list: A list of marker ids
 :type marker_id_list: list of numbers

 :returns: A dictionary of marker positions with the marker_ids as keys
 """
 aruco_dict = aruco.Dictionary_get(aruco.DICT_4X4_250)
 parameters = aruco.DetectorParameters_create()
 corners, ids, rejectedImgPoints = aruco.detectMarkers(
 gray_image, aruco_dict, parameters=parameters)

 center_dict = {}
 for marker_id in marker_id_list:
 try:
 if marker_id not in ids:
 center_dict[marker_id] = None
 else:
 indice = np.where(ids == marker_id)
 center = np.sum(corners[indice[0][0]][indice[1][0]], axis=0)/4
 center_dict[marker_id] = center
 except:
 center_dict[marker_id] = None
 return center_dict

[docs]def detect_area(hsv_img, lower_color, upper_color, marker_id, min_size, draw=False):
 """Detects the contour of an object containing a marker based on color

 It always returns the smallest contour which still contains the marker
 The contour is detected using an image with hsv color space
 to be robust under different lighting conditions.
 If draw=True the systems draws all found contours
 as well as the current smalles one containing the marker onto hsv_img

 :param hsv_image: a Image in hsv color space in which the contours should be detected
 :type hsv_image: numpy array
 :param lower_color: a 3x1 array containing the lower boundary for the color detection
 :type lower_color: numpy array
 :param upper_color: a 3x1 array containing the upper boundary for the color detection
 :type upper_color: numpy array
 :param marker_id: the ID of a 4x4 aruco marker which identifies the object
 :type marker_id: scalar
 :param hsv_img:
 :param min_size:
 :param draw: (Default value = False)

 """

 # color detection
 if lower_color[0] <= 0:
 second_lower = lower_color
 second_lower[0] = 179+lower_color[0]
 second_upper = upper_color
 second_upper[0] = 179

 lower_color[0] = 0

 mask1 = cv2.inRange(hsv_img, lower_color, upper_color)
 mask2 = cv2.inRange(hsv_img, second_lower, second_upper)
 mask = mask1 | mask2
 else:
 mask = cv2.inRange(hsv_img, lower_color, upper_color)

 # TODO carefull depending on opencv version the return may be different
 contours, _ = cv2.findContours(
 mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

 # marker detection:
 split_hsv = cv2.split(hsv_img)
 gray = split_hsv[2]
 center_dict = track_aruco_marker(gray, [marker_id])
 center = center_dict[marker_id]

 if np.any(center is not None):
 if draw is True:
 cv2.drawContours(hsv_img, contours, -1, (0, 255, 255), 3)
 cv2.circle(hsv_img, (center[0], center[1]), 7, (90, 255, 255), 7)

 # TODO smallest contour should be real contour encompassing whole image
 row, col = hsv_img.shape[:2]
 smallest_contour = np.array([[0, 0], [0, row], [col, row], [col, 0]])
 # TODO not needet with real contour
 contour_found = 0
 for i in range(len(contours)):
 marker_in_contour = True

 marker_in_contour = cv2.pointPolygonTest(
 contours[i], tuple(center), False) > 0
 marker_in_contour = marker_in_contour and cv2.contourArea(
 contours[i]) >= min_size
 if marker_in_contour:
 if cv2.contourArea(contours[i]) <= cv2.contourArea(smallest_contour):
 contour_found = 1
 smallest_contour = contours[i]

 if contour_found == 1:
 if draw is True:
 cv2.drawContours(hsv_img, smallest_contour, -
 1, (90, 255, 255), 6)
 return smallest_contour

 return None

[docs]def cart2pol(cart_x, cart_y):
 """Converts a point (x,y) into polar coordinates (theta, rho)

 """
 theta = np.arctan2(cart_y, cart_x)
 rho = np.hypot(cart_x, cart_y)
 return theta, rho

[docs]def pol2cart(theta, rho):
 """Converts polar coordinates (theta, rho) into cartesian coordinates (x,y)

 """
 x = rho * np.cos(theta)
 y = rho * np.sin(theta)
 return x, y

_static/file.png

_static/minus.png

_images/lab_setup_left_yellow.png
=+t $@F P LH

H (048/179)

Hrange (50/50) |
s (000/255) (T

Srange (120/120)
vV (097/255)

Vrange (120/120) |
Marker Id (006/120) (o 1

Minimum contour size (0011441/1024000) (T
(x=80,

_static/rogata_favicon.png

_images/lab_setup_marker_z.png
e st VE@BEPLPLHY

H (000/179) (I
Hrange (00/50) (T

I
s (164/255)

Srange (098/120)

v (203/255)

'V range (054/120) o —_{

Marker Id (001/120) (T

Minimum contour size (0000000/1440000) (T

(x=1214, y=379) ~ G:87 B:17

_static/rogata_title_turtle.png

_images/hsv_cone.jpg

_static/plus.png

_images/lab_setup_basic.png
e st VE@BEPLPLHY

H (000/179) (I
Hrange (00/50) (T

I
s (173/255)

Srange (098/120)

v (203/255)

'V range (054/120) o —_{

Marker Id (006/120) (o 1

Minimum contour size (0000000/1440000) (T

(x=1205, y=504) ~ G78 614

_images/rogata_communication.png
Higher Level System 1 | | Higher Level System 2

1 lGame Object
°y Querries

RoGaTa Scene

Sensordata
Commands
Commands

Game Object 1 | | Game Object 3
Game Object 2 | | Game Object 4

Sensordata

_images/rogata_title_turtle.png

_images/lab_setup_wall.png
e st VE@BEPLPLHY

H (048/179)

Hrange (50/50) |
s (000/255) (I

Srange (120/120)
v (097/255)

Vrange (120/120) |
Marker Id (000/120) (T

Minimum contour size (0366123/1024000)
(x=107, y=799) ~ G0 B:0

_static/up-pressed.png

_images/ray_casting_example.gif

_static/up.png

_images/visibility_example.gif
mdden

_images/calibrate_scene.png
e st VE@BEPLPLHY

H (000/179) (I

Hrange (00/50) (T

s (000/255) (T

Srange (000/120) (I

v (000/255) (T

Vrange (000/120) (I

Marker Id (000/120) (T

Minimum contour size (0000000/1024000) (T

(x=1122, y=250) ~

B.82

_images/complex_object.png

nav.xhtml

 Table of Contents

 		
 RoGaTa Engine Documentation

 		
 What is the RoGaTa Engine?

 		
 Who this engine is for

 		
 How it Works

 		
 Game Objects

 		
 Interacting with a Game Object

 		
 Dynamic Game Objects

 		
 Scenes

 		
 Getting Started

 		
 Setting up the Environment

 		
 Setting up the Game Area

 		
 Setting up a Scene

 		
 Calibrating the Arena

 		
 Building Game Objects

 		
 Building a Scene

 		
 Tracking Dynamic Objects

 		
 Using the Engine in Gazebo

 		
 Tutorials

 		
 Simple Scoreboards

 		
 Simple Line of Sight Calculation

 		
 Ray Casting

